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The Fermi and Coulomb holes of the 21S state of the helium isoelectronic 
sequence are investigated. Several interesting differences between the results 
obtained and those which might be expected on the basis of the corresponding 
23S state are pointed out and discussed. 
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1. Introduction 

Although the majority of quantum chemical calculations are made within the self- 
consistent field formalism in which only the averaged (rather than instantaneous) 
interactions between electrons are included, much effort has been devoted to the 
incorporation of electron correlation [1] and to the attainment of a better 
understanding of its consequences. For  the latter objective, much has been learned 
through the use of hole formalisms according to which the Coulomb and Fermi 
correlations between electrons are described as functions of the interelectronic 
separation. Explicitly evaluated Coulomb holes are available for the ground state of 
the He sequence [2], for the 23S state [3], as well as for larger atomic and molecular 
systems [4]. 

In this paper we present such a study for the first excited singlet state of the helium 
isoelectronic sequence. We begin with a discussion of the Hartree and Hartree-Fock 
wavefunctions, which are used for the study of the Fermi hole. This is followed by 
the results obtained by use of  correlated wavefunctions for the determination of  the 
Coulomb hole. 
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2. The Roothaan-Hartree-Fock Calculations 

Hartree-Fock wavefunctions for the 2 IS state of  He, Li + and Be 2 + were computed 
using the self-consistent field equations previously described [5]. The two-electron 
wavefunction is : 

= ls(1)2s(2) + 2s(1) ls(2). 

ls and 2s are linear combinations of  N1 and Nz primitive Slater functions, 
respectively. The exponential parameters of  the basis functions for each orbital were 
expressed in even-tempered form [6], reducing the number  of  non-linear parameters 
to be optimized to four. In order to converge to the first excited 1S state the second 
lowest eigenvalue and eigenvector were iterated on in the SCF equation for the 2s 
orbital, following Coolidge and James [7]. The corresponding Hartree functions 
were discussed in Ref. [8]. 

The ls and 2s orbitals are non-orthogonal  to one another in both the Hartree and the 
Hart ree-Fock wavefunctions for the 2~S state. The overlap integral ( l s [2 s )  is 
plotted in Fig. 1. It  vanishes both at Z-+ 0% where the orbitals become hydrogen-like 
and therefore orthogonal,  and at Z = 1, where the outer orbital becomes infinitely 
diffuse. The maximum in the overlap at 1/Z ~_ 0.643.7 can be used to quantify the 
distinction between the high Z and low Z members of  the isoelectronic sequence, 
which is relevant to the discussion of convergence of 1/Z perturbation theory, 
behaviour of  bound states close to the minimal Z necessary for binding, etc. 

Table 1 lists the energies and some expectation values. By comparison with the 
virtually exact results [9], it is clear that the correlation corrections to the 
interelectronic repulsion, interelectronic distance and the square of this distance 
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Fig. 1. The overlap integral between 
the inner and outer orbitals in the 
Hartree and Hartree-Fock wavefunc- 
tions for the 21S state of the He 
sequence 
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Table 1. Energ ies  a n d  expec t a t i on  va lues  fo r  the  21S s ta te  a 

E n e r g y  ( 1 / r a 2 )  ( r 1 2 )  ( r 2 2 )  

H e  

N = 3  - 2 . 1 4 2 9 5  0.2491 5.3911 34.08 
N = 4  - 2 . 1 4 3 3 8  0 .2496 5 .3332 33.05 

N = 5  - 2 . 1 4 3 4 6  c 0 .2495 d 5 .3456 33.33 

Peker is  b - 2 . 1 4 5 9 7  - 5 .2697 33.30 

C o r r e l a t i o n  - 0 . 0 0 2 5 1  - - 0 . 0 7 5 9  - 0.03 

Li + 

Be + + 

N = 3  - 5 . 0 3 5 1 5  0.481 2.84 9.7 

N = 4  - 5 . 0 3 6 1 5  0.481 2.85 9.52 

N =  5 - 5 .03620 0 .480 2.85 9.54 

Peker is  b - 5 .04087 - 2.84 9.44 

C o r r e l a t i o n  - 0 .00467 - - 0 . 0 1  - 0.10 

N = 3  - 9 . 1 7 7 4 2  0.715 1.96 4.53 

N = 4  - 9 . 1 7 8 7 8  0.715 1.95 4.44 

N = 5  - 9 . 1 7 8 8 4  0.713 1.95 4.45 
Peker is  b - 9 . 1 8 4 8 7  - 1.95 4 .44 

C o r r e l a t i o n  - 0 . 0 0 6 0 3  - - 0 . 0 0  0.01 

aAtomic  uni t s  a re  used  t h r o u g h o u t  this  paper ,  b Ref.  [9] .  

c D a v i d s o n ' s  [ J .  C h e m .  Phys .  42, 4199 (1965)]  H a r t r e e - F o c k  resul t  

is - 2 . 1 4 3 4 4  a.u.  

d D a v i d s o n ' s  resul t  is 0.2496.  

63 

have the opposite sign to what is expected on the basis of the more conventional 
effect of correlation, as observed in the helium ground state [2] and in the ground 
state of the hydrogen molecule [10]. As the nuclear charge increases, this reversed 
correlation effect decreases, in agreement with the suggestion that it is a consequence 
of the coupling of radial and angular correlations, which is a third-order effect in a 
1 /Z  expansion [11]. Furthermore, the more diffuse the outer orbital, the smaller the 
effective nuclear charge, and the stronger the coupling. Therefore, the reversed 
correlation effect is expected to be stronger in the 21S state than in the 23S state since 
the outer orbital is more diffuse in the former, in agreement with the computed 
results. A similar situation also exists in the 23p and 21p states I-11]. 

3. Fermi correlation in the I s2s states 

The Fermi hole may be defined as the difference between the Hartree-Fock and 
Hartree pair distributions [12]. Obviously, there is no Fermi hole for a closed shell 
(singlet) in a two electron system, but there is one for both the triplet and 
corresponding open-shell singlet. 

If  the orbitals in the singlet and triplet states are taken to be identical and 
orthogonal, then the "Fermi hole" of the singlet state is the mirror image of  the 
triplet state one. Thus, 

3fHF(q 2) --fH(rl 2) = -- [ lJ'Hv(rl 2 ) - f H ( r l  e)] (2) 
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Fig. 3. The Fermi hole for Li + 
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Fig. 2. The Fermi hole for He 

where the superscripts 3 and 1 refer to the triplet and singlet states respectively. 
However, with the ls and 2s orbitals of  the Hartree-Fock (HF) wavefunctions 
obtained variationally for each state, the Fermi holes are no longer mirror images of  
one another. The results are shown in Figs. 2 and 3. 

At small interelectronic distances the Fermi hole of  the 2 t S state of He is negative, in 
contradiction to what one might expect on the basis of  the results for the 23S state. 

To account for the difference in the behaviour for small r t 2 we shall show that in the 
triplet state the Fermi hole is always negative for very small interelectronic distances. 
For  s-type orbitals Coulson and Neilson I-2] derived the pair distribution function: 

f(r12)=8~2ra2 rldr 1 ~ r2dr27JZ+~rldra ~ r2dr27 t2 (3) 
L r t 2  F 1 - -  1'12 0 r 12  - -  I ' t  

For  very small interelectronic distances rl-~ r2 and consequently, 

f (q2)  ~ r22" ~ rl 21/12(rl, rl Jr-r12) dq (4) 
0 
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In the Hartree approximation, ~H= ls(1).2s(2) one obtains 

~ n ( r l ,  r 1 + r12 ) ~- ls(1). 2s(1) (5) 

Therefore the Hartree pair distribution function for very small rl 2 is proportional to 
the interelectronic distance squared 

fs(r12) ~ r~2 

The HF wavefunction of the triplet state is : 

3 7 tF  = ls(1)- 2s(2) - 2s(1) - ls(2) (6) 

hence, 

3 i/.tHF(r 1, rl + r12) ,,~ [ls(1)2s(1) + r 12 ls(1). 02s(1)/c~r1] 

-- [2s(1) �9 ls(1) + r12-2s(1)- c?ls(1)/c~rl] (7) 

= r~2- [ls(1). ~32s(1)/Or I -- 2s(1)/c~ls(1)/Or 1 ] 

By substituting this result in Eq. (4) one obtains: 

3fnv(r 12)~r~2 

Therefore, 

3 A ( r 1 2 )  = 3fHF(r  12 ) - fH( r  12) ~ - r~2 < 0 (8) 

which is what we wanted to prove. 
However, in the singlet state 

1 tP'HF(r 1, rj + r 12) ~ 2. ls(1)-2s(1) + r12 ~[ls(1)2s(1)]/~3rz (9) 

and 

l fHF(r l2)~  r22 

The corresponding Fermi hole at small r12 is equal to the difference of two terms 
containing the same power of r12, and can therefore be either negative or positive. 

In order to account for the shape of the singlet Fermi hole at large r12 we first point 
out that using the same orbitals for the Hartree and the Hartree-Fock wavefunc- 
tions a maximum should appear at large r12 , for high nuclear charges but not for 
low ones. The analogous result for the triplet state has been discussed in Ref. (8). 

The calculations with full optimization yield, for large r,  2, an opposite picture to the 
one discussed. This difference indicates that the low Z Fermi hole is not a direct 
manifestation of the exchange term, but rather has a significant contribution due to 
the Coulomb term; see Fig. 4. 

4. The Coulomb Hole 

Fig. 5 illustrates the Coulomb hole for the 21S state of  He, Li + and Be + +, computed 
by use of  the Hartree-Fock pair distribution function discussed in the previous 
section, and the correlated pair distribution function evaluated by Boyd and 
Coulson [ 13] using Perkins' wavefunction [ 14]. 
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On the basis of  a previous comparison [ 13] for He, the correlated wavefunctions of  
Perkins appear to be adequate for the determination of the Coulomb hole. 

The accuracy of the Hartree-Fock pair distribution function is assessed by the 
comparative values in Table 2. The agreement among the results is excellent at low 
r x 2 and adequate at large r ~ 2- As the nuclear charge increases the results for N~ = N2 
= 4 and N1 = N2 = 5 get even closer. 

Table 2. Dependence of the He 2~S Coulomb hole on the 
choice of  Hartree-Fock wavefunction 

Value of A(r12)" 
rla Davidson b N~ = N  2 =4  N 1 = N 2 = 5  

0.4 - 0.0026 - 0.0027 - 0.0026 
1.2 +0.0023 +0.0023 +0.0023 
1.9 +0.0004 -0.0009 +0.0006 
3.6 +0.0067 +0.0077 +0.0062 
7.0 -0.0038 -0.0037 -0.0023 
Energy -2.14344 -2.14338 -2.14346 

a A(r12) evaluated by use of the correlated wavefunction of 
Perkins (1963) and the SCF wavefunction indicated at the top 
of each column. 
b j. Chem. Phys. 42, 4199 (1965). 

The gradual changes observed in Fig. 5 for the 21S state Coulomb hole as a function 
of the nuclear charge, Z, are in sharp contrast to the situation in the 23S state. For 
the latter, it has been observed [3] that the Coulomb hole changes distinctly between 
He and Li +. Nevertheless, the Coulomb hole for He has some conspicuous 
differences f rom the larger Z Coulomb holes. Further increase in Z leads to a 
contraction of  the Coulomb hole but retains the Li + form for the other isoelectronic 
ions. 
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